Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper.

نویسندگان

  • Derek A Bruzewicz
  • Meital Reches
  • George M Whitesides
چکیده

This paper describes the use of a modified x,y-plotter to generate hydrophilic channels by printing a solution of hydrophobic polymer (pol(dimethylsiloxane; PDMS) dissolved in hexanes onto filter paper. The PDMS penetrates the depth of the paper and forms a hydrophobic wall that aqueous solutions cannot cross. The minimum size of printed features is approximately 1 mm; this resolution is adequate for the rapid prototyping of hand-held, visually read, diagnostic assays (and other microfluidic systems) based on paper. After curing the printed PDMS, the paper-based devices can be bent or folded to generate three-dimensional systems of channels. Capillary action pulls aqueous samples into the paper channels. Colorimetric assays for the presence of glucose and protein are demonstrated in the printed devices; spots of Bromothymol Blue distinguished samples with slightly basic pH (8.0) from samples with slightly acidic pH (6.5). The work also describes using printed devices that can be loaded using multipipets and printed flexible, foldable channels in paper over areas larger than 100 cm2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of low-cost micropatterned polydimethyl-siloxane scaffolds to organise cells in a variety of two-dimensioanl biomimetic arrangements for lab-on-chip culture platforms

We present the rapid-prototyping of type I collagen micropatterns on poly-dimethylsiloxane substrates for the biomimetic confinement of cells using the combination of a surface oxidation treatment and 3-aminopropyl triethoxysilane silanisation followed by glutaraldehyde crosslinking. The aim of surface treatment is to stabilise microcontact printing transfer of this natural extracellular matrix...

متن کامل

Microfluidic channels fabricated from poly(vinylmethylsiloxane) networks that resist swelling by organic solvents.

This paper describes the use of poly(vinylmethylsiloxane) (PVMS) networks for fabricating microfluidic channels that resist swelling in the presence of organic solvents, thus providing a versatile alternative to poly(dimethylsiloxane) (PDMS). In particular, we demonstrate that in contrast to PDMS microchannels, the UV-treated PVMS structures exhibit high resistance to swelling by toluene.

متن کامل

Surface modification of poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting.

Poly(dimethylsiloxane) (PDMS)-based microfluidic devices are increasing in popularity due to their ease of fabrication and low costs. Despite this, there is a tremendous need for strategies to rapidly and easily tailor the surface properties of these devices. We demonstrate a one-step procedure to covalently link polymers to the surface of PDMS microchannels by ultraviolet graft polymerization....

متن کامل

Potentiometric titrations in a poly(dimethylsiloxane)-based microfluidic device.

This paper describes a microfluidic device, fabricated in poly(dimethylsiloxane), that is used for potentiometric titrations. This system generates step gradients of redox potentials in a series of microchannels. These potentials are probed by microelectrodes that are integrated into the chip; the measured potentials were used to produce a titration curve from which the end point of a reaction ...

متن کامل

Poly(oxyethylene) based surface coatings for poly(dimethylsiloxane) microchannels.

Control of surface properties in microfluidic systems is an indispensable prerequisite for successful bioanalytical applications. Poly(dimethylsiloxane) (PDMS) microfluidic devices are hampered from unwanted adsorption of biomolecules and lack of methods to control electroosmotic flow (EOF). In this paper, we propose different strategies to coat PDMS surfaces with poly(oxyethylene) (POE) molecu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 80 9  شماره 

صفحات  -

تاریخ انتشار 2008